Grothendieck-neeman Duality and the Wirthmüller Isomorphism
نویسندگان
چکیده
We clarify the relationship between Grothendieck duality à la Neeman and the Wirthmüller isomorphism à la Fausk-Hu-May. We exhibit an interesting pattern of symmetry in the existence of adjoint functors between compactly generated tensor-triangulated categories, which leads to a surprising trichotomy: There exist either exactly three adjoints, exactly five, or infinitely many. We highlight the importance of so-called relative dualizing objects and explain how they give rise to dualities on canonical subcategories. This yields a duality theory rich enough to capture the main features of Grothendieck duality in algebraic geometry, of generalized Pontryagin-Matlis duality à la Dwyer-Greenless-Iyengar in the theory of ring spectra, and of Brown-Comenetz duality à la Neeman in stable homotopy theory.
منابع مشابه
The Wirthmüller Isomorphism Revisited
We show how the formal Wirthmüller isomorphism theorem proven in [2] simplifies the proof of the Wirthmüller isomorphism in equivariant stable homotopy theory. Other examples from equivariant stable homotopy theory show that the hypotheses of the formal Wirthmüller and formal Grothendieck isomorphism theorems in [2] cannot be weakened.
متن کاملThe Compactness Locus of a Geometric Functor and the Formal Construction of the Adams Isomorphism
We introduce the compactness locus of a geometric functor between rigidly-compactly generated tensor-triangulated categories, and describe it for several examples arising in equivariant homotopy theory and algebraic geometry. It is a subset of the tensor-triangular spectrum of the target category which, crudely speaking, measures the failure of the functor to satisfy Grothendieck-Neeman duality...
متن کاملRIGID DUALIZING COMPLEXES
Let $X$ be a sufficiently nice scheme. We survey some recent progress on dualizing complexes. It turns out that a complex in $kinj X$ is dualizing if and only if tensor product with it induces an equivalence of categories from Murfet's new category $kmpr X$ to the category $kinj X$. In these terms, it becomes interesting to wonder how to glue such equivalences.
متن کاملRelation between two twisted inverse image pseudofunctors in duality theory
Grothendieck duality theory assigns to essentially-finite-type maps f of noetherian schemes a pseudofunctor f× right-adjoint to Rf∗, and a pseudofunctor f ! agreeing with f× when f is proper, but equal to the usual inverse image f∗ when f is étale. We define and study a canonical map from the first pseudofunctor to the second. This map behaves well with respect to flat base change, and is taken...
متن کاملDuality for Cousin Complexes
We relate the variance theory for Cousin complexes − developed by Lipman, Nayak and the author to Grothendieck duality for Cousin complexes. Specifically for a Cousin complex F on (Y, ∆)—with ∆ a codimension function on a formal scheme Y (noetherian, universally catenary)—and a pseudo-finite type map f : (X, ∆) → (Y, ∆) of such pairs of schemes with codimension functions, we show there is a der...
متن کامل